Showing posts with label Basic Electricity. Show all posts
Showing posts with label Basic Electricity. Show all posts

Tuesday, December 7, 2010

What are the effects of Electricity

The Effects of electricity
Electricity is  form of energy which could not be seen,but its presence could be detected due to numerous effects it has in  our daily living.

1. Mechanical effect  
An electric fan  for ventilation through the rotation of its blades; A vacuum cleaner that cleans our floors with dirt's.These devices operate because of electricity. Mechanical effect of electricity is made possible by the use of the device called the motor. The electricity powers up the motor in order for it to make work for the benefit of man.


2. Chemical Effect
electricity chemical effectThe  best example for a chemical effect of electricity is Electroplating. It  involves the deposition of a thin protective layer  onto a prepared metal surface, using electrochemical processes.Applications of electroplating can be observed from the household equipments ,kitchen utensils,instruments common steel bolts ,nuts and washers and and even a fashion wear such as bracelets, earrings and necklaces which could either be Gold plated, silver plated, . Aluminum parts and steel parts in lighting fixtures are also electroplated.


3.Thermal Effect
  "A current of electricity passes over a conductor raises its temperature". That is why  heating elements requires an alloy of  metal to withstand  intense heat without melting. This heating elements are installed in our electric cooker, iron and heater.

4.Magnetic effects
electricity magnetic effectsSpeakers produces varying sounds  because of magnetic effect. these devices have electromagnets  and a permanent magnet .. These two magnets  interact with each other. When the electrical current flowing through the voice coil changes direction, the coil's polar orientation reverses. This changes the magnetic forces between the electromagnet and the permanent magnet, moving the electromagnet and attached diaphragm back and forth . It pushes and pulls on the speaker cone  producing a vibration of the air in front of the speaker creating sound waves. 
electricity physiological effect 5. Physiological Effect
Are you familiar with a treatment  known as "Shock Treatment or Shock Therapy" . This medical treatment is being utilized in rehabilitation centers to treat neurotic disorders


6.Photoelectric effect
  Wondering how did the doors in malls hotels and other buildings and offices opens automatically as soon as  you step the porch of these buildings? It is possible through photoelectric effect. These doors have "photo cells" This photocells have electrodes that are light sensitive that is used to operate a relay, which might turn a motor on to open a door or ring a bell in an alarm system. Same principle are also true in counting vehicles passing a road.


electricity luminous effect
7.Luminous Effect
 " Light" this is the very common effect of electricity.  If however after you had switched on the means of control and the room is still not illuminated,then you'll surely say, there's an absence of electricity. To layman's language it is called a black out or brown out. But what is being implied here actually is that there's no electrical current in the circuit.

Using multimeter VOM as voltmeter for ACV test

The Ac voltmeter is used to measure alternative current voltage or electrical pressure of a circuit. This instrument is connected across the circuit and it does not require correct application of the polarity . The unit of measure is volt(V).

Note;
  •  If the voltage range is unknown get the estimate value by setting the knob at the top level or should be   at 1000 V before measuring AC voltage,then adjust or lower the range until you could read it conveniently.
  •   Do not touch the test probe.
Procedure:
  1. set the knob  of your multimeter  to AC V
  2. Choose the proper range .The numbers indicated in the multimeter are the maximum voltage reading for the range. 
  3. Connect the test probe in the component being measured
  4. Read the voltage value on the display



Sunday, December 5, 2010

How to use multimeter as voltmeter DC voltage test


USE Multimeter as voltmeter
The DC voltmeter is used to measure direct current voltage or electrical pressure of a circuit. the unit of measure is in volt(V). Multi-meters can be used as voltmeter and this is done by connecting the instrument across the circuit . It requires correct application of the polarity. Your circuit must be powered up in conducting this test

Procedure:
  1.  Check the pointer of the multi-tester to zero 
  2. Set the knob to DCV. Set the voltage higher than the estimated value being measured. If the voltage range is unknown,get the estimate value by setting the knob at the top level (1000V) then choose a proper range for exact measurement
  3. Connect the multimeter across the circuit.Attach the black lead of the meter to the  to the negative (-) connection of the circuit ,and the red test lead to the positive (+)
  4. read the voltage value.
Attention:
  • Observe the correct polarity of the meter.
  • If the pointer deflects backward or the display to negative value disconnect the test probe immediately and reverse the connection of the pointer.
  • Always estimate the value of the voltage range to top level and gradually lower it until you can read it conveniently.
  • Do not touch the test probe.

Wednesday, December 1, 2010

Using a Multimeter/multi-tester: Preliminary setup and Safety precautions

Multi-tester (VOM-volt/ohmeter) also called multimeter is designed to measure different magnitudes of electrical units:voltage,current and resistance. It incorporates the functions of a voltmeter,ohmmeter,and Milli-ammeter into one device. A multimeter maybe Digital (DVOM/DMM) or Analog.


Parts and functions of multi-tester
 parts of digital and analog multimeter
Digital multimeter        Analog multimeter
1.   Zero ohm adjuster- for analog multi-testers this part sets the  indicator of the left scale to zero
2.   Range Selector switch knob-this is a switch that is calibrated to select the proper range of the meter
3. Amperage terminal -plug in connection for red (positive) test lead for measuring amperes 
4   +V.Ω.f terminal(positive )- terminal for positive test probe.It is  used for most types of measurements.
5.   -COM terminal (negative,N)- a terminal for the negative test probe
6.   Home plate-Serves as the cover or panel for multi-tester
7.   Indicator pointer- It deflects a certain point and use as a reference of where to read the measurement
8.  Output socket- used for measuring special purpose such as high AC  voltage,intensity of sounds in decibel,etc
9. Range Scale- it indicates the test function and scale option
10. Display for Digital multi meter(DMM) -it displays the measurement reading. Usually have a four digit display with a +/- indicator. 
Preliminary setup before measurement

1. Before start measuring, make sure that the pointer stays at zero(0) position on the left end of the scale. If not,gently adjust the zero corrector with the use of screwdriver to set it to zero.

2.Select the proper range before measuring. Do not attempt to switch the range knob while  measuring. Disconnect the test leads first before switching the range knob as it may damage your multimeter. in determining a measuring range,select a higher voltage than the value to be measured as well as where the pointer of the meter moves to considerable extent. however,select the maximum range and measure in case the extent of value to be measures can not be predicted.

Precautions for safety measurement

1. Never use meter on the electric circuit that exceeds 3k VA.
2. Pay special attention when measuring the voltage of AC30 volts or DC60V or more to avoid injury.
3. Never apply an input signals exceeding the maximum rating input value.
4. Never use meter for measuring the line connected with equipment that generates induced or surge voltage since it may exceed the maximum allowable voltage.
5.  Never use meter if the meter or test leads are damaged or broken.
6.  Never use encase meter.
7.  Be sure to use fuse of the specified rating type.never use substitute of the use or never make a short circuit of the fuse.
8. Always keep your fingers behind the finger guards on the probe when making measurements.
9. Be sure to disconnect the test pins from the circuit when changing the function of the range.
10. Before starting measurement,make sure that the function and range are properly set in accordance with the measurement.
11. Never use meter with wet hands or in damp environment.
12. Never open tester case except when replacing batteries or fuses. Do not attempt any alteration of original specifications.
13. Never use test leads other than the specified test leads.
14. To ensure safety and maintain accuracy,calibrate and check the meter at least once a year.



   

Tuesday, November 30, 2010

Power in parallel Circuits

Power dissipated by each individual resistance is simply added to find the total power dissipated by the series circuit. This same procedure also applies to parallel circuits. If there are five resistive branches in a parallel circuit and each was dissipated 1 watt of power, the total power the circuit is 5 watts . The individual power dissipations of all resistors are added to find the total power dissipated.

Pt= P1+P2+P3....+Pn


Pt=1W+1W+1W+1W+1W=5W

power Calculations in parallel Circuits

power in parallel circuits formula


Where: I-current
            E-voltage
            R-Resistance


As an alternative method ,If you have already calculated the total or main line currents flowing in the circuits, the total circuit voltage,and /or the total circuit resistance, you can calculate the total power the circuit dissipates by using the three formulas listed above on the total circuit quantities.

alternative method power in parallel circuit


where:
It-total current
Et-Total voltage
Rt-Total Resistance
Pt-Total power

Monday, November 29, 2010

Series and parallel resistance circuit :explanation

The familiarity of the few circuit building blocks is important in  understanding complex circuits. In this post I will explain the most important ideas in  DC circuits.

From my previous posts I discussed about the Ohms law . This is a continuation of the post about  simple direct current circuits. 
   
Resistors in series
   A series circuit is one in which total line current passes through each and every conductor in the circuit. two or more electric component are considered to be in series in the same current flows through all these component
resistors in series diagram










laws of Series circuit
1. current in all parts of the series circuit is the same
It=I1+I2+I3+In
2. voltage across a group of conductor connected in series is equal to the sum of the individual voltage across individual resistors
Et=E1+E2+E3+En
3. total resistance of a group of conductors connected in series is equal to the sum of the individual resistances
Rt=R1=R2+R3+Rn

Resistors in parallel
  A parallel circuit is one in which current may flow through two or more independent branches.Two or more components are considered in parallel if the same voltage appears across all these components

resistors in parallel diagram











laws of parallel circuits
1. total voltage of a parallel circuit is the same as across each branch of circuit
Et= E1=E2=E3=En
2.Total current is equal to the sum of individual branch currents
It=I1+I2+I3+In
3.The reciprocal of the total resistance of a number of resistors connected in parallel is equal to the sum of the reciprocals of the separate resistances.Total resistance is always less or approximately equal to the values of the smallest resistive branch
1/Rt=1/R1+1/R2+1/R3+1/Rn
 Rt=1/(1/R1+1/R2+1/R3+1/Rn)

Note that : it is important to know that connecting additional resistors in series increases resistance, while connecting additional resistance in parallel decreases the total resistance.